Biogenesis and light regulation of the major light harvesting chlorophyll-protein of diatoms.
نویسندگان
چکیده
The apoprotein of the major light harvesting pigment-protein complex from the diatom Phaeodactylum tricornutum (UTEX 646) is composed of two similar polypeptides of 17.5 and 18.0 kilodaltons (kD). The in vivo synthesis of these polypeptides is inhibited by the 80s protein synthesis inhibitor cycloheximide, but not by the 70s ribosome inhibitor chloramphenicol. When total poly(A)(+) RNA was used in in vitro protein synthesis, a number of polypeptides were synthesized with a dominant product at 22 kD. When the polypeptides were immunoprecipitated with monospecific antibodies to the 17.5 and 18.0 polypeptides, a single protein zone of 22 kD was detected. Immunoprecipitation with preimmune serum failed to precipitate detectable levels of protein at any relative molecular weight (M(r)). These findings indicate that the two apoprotein polypeptides of the diatom light harvesting pigment-protein are translated from polyadenylated message on cytoplasmic ribosomes as either a single or two (or more) similar M(r) precursor proteins. These findings also suggest that this protein is encoded in the nucleus.Photosynthetic light adaptation features of P. tricornutum UTEX 646 indicate that it responds to low light by increasing cell size and numbers of photosystem I and II reaction centers per cell, but does not change photosynthetic rate per cell or photosynthetic unit sizes significantly. When low light cells are exposed to higher photon flux densities, the in vivo incorporation of label into the apoprotein of the light harvesting complex decreases. In contrast, high light grown cells show rapid (<3 hour) increases in apoprotein synthesis when exposed to low light levels. This is the first demonstration of a specific role of photon flux density in regulating the synthesis of a major light harvesting pigment-protein during photosynthetic light adaptation.
منابع مشابه
How reduced excitonic coupling enhances light harvesting in the main photosynthetic antennae of diatoms.
Strong excitonic interactions are a key design strategy in photosynthetic light harvesting, expanding the spectral cross-section for light absorption and creating considerably faster and more robust excitation energy transfer. These molecular excitons are a direct result of exceptionally densely packed pigments in photosynthetic proteins. The main light-harvesting complexes of diatoms, known as...
متن کاملAssembly of the major light-harvesting chlorophyll-a/b complex: Thermodynamics and kinetics of neoxanthin binding.
The major light-harvesting chlorophyll-a/b complex in most higher plants contains three carotenoids, lutein, neoxanthin, and violaxanthin. How these pigments are assembled into the complex during its biogenesis is largely unknown. Here we show that neoxanthin but not lutein can dissociate from the fully assembled complex. Its equilibrium binding constant in a detergent system (0.1% n-dodecyl-be...
متن کاملStrategies to enhance the excitation energy-transfer efficiency in a light-harvesting system using the intra-molecular charge transfer character of carotenoids.
Fucoxanthin is a carotenoid that is mainly found in light-harvesting complexes from brown algae and diatoms. Due to the presence of a carbonyl group attached to polyene chains in polar environments, excitation produces an excited intra-molecular charge transfer. This intra-molecular charge transfer state plays a key role in the highly efficient (∼95%) energy-transfer from fucoxanthin to chlorop...
متن کاملLight-harvesting pigment-proteins of photosystem I in maize. Subunit composition and biogenesis.
Three different pigment-binding proteins of the light-harvesting complex (LHC I) of maize photosystem I (PS I) have been isolated. Absorption and fluorescence excitation spectral analyses showed that each pigment-protein can transfer absorbed energy from its carotenoid and/or chlorophyll b components to chlorophyll alpha. Their apoproteins with apparent sizes of 24 (LHC Ia), 21 (LHC Ib), and 17...
متن کاملLight-Harvesting Chlorophyll a/b Complexes: Interdependent Pigment Synthesis and Protein Assembly.
The biogenetic interdependence of light-harvesting chlorophyll (Chl) a/b proteins (LHCPs) and antenna pigments has been analyzed for two nuclear mutants of Chlamydomonas that have low levels of Chl b, neoxanthin, and loroxanthin. In mutant PA2.1, the apoprotein precursors (pLHCP II) of the major light-harvesting complex LHC II were synthesized at approximately wild-type rates, processed to thei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 80 1 شماره
صفحات -
تاریخ انتشار 1986